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We show that in driven systems the Gaussian nature of the fluctuating force and time reversibility are
equivalent properties. This result together with the potential condition of the external force drastically restricts
the form of the probability distribution function, which can be shown to satisfy time-independent relations. We
have corroborated this feature by explicitly analyzing a model for the stretching of a polymer and a model for
a suspension of noninteracting Brownian particles in steady flow.
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I. INTRODUCTION

The advances of experimental techniques have permitted
the manipulation of single molecules and the study of their
behavior under magnetic �1� and hydrodynamic forces �2�.
These experiments have made it possible to analyze pro-
cesses taking place at very short length scales and have
opened new perspectives on applications of nonequilibrium
statistical mechanics to small-scale systems. Although being
under nonequilibrium conditions, many of these systems
obey time-independent relations, or generalized fluctuation-
dissipation theorems, whose importance has been stressed in
a number of experimental situations �3–6�. It has been shown
�7� that these relations can be derived from the Onsager-
Machlup theory �8�, which assumes that the noise in the
Langevin equation is Gaussian. In this work, we find that the
relations are a direct consequence of the time-reversal sym-
metry principle. We show a theorem connecting both prop-
erties when the system is subjected to an external driving
force. Our conclusion is that time reversibility has important
consequences on the stochastic behavior of nonequilibrium
systems, leading in particular to restrictions on the probabil-
ity distribution.

The paper is organized as follows. In Sec. II, we study
Langevin equations in one dimension which have been used
as a model for the stretching of single molecules and for the
dynamics of colloidal particles in a translating optical trap.
We also analyze the implications of time-reversal symme-
tries in such systems. In Sec. III we consider the Brownian
motion of noninteracting particles in linear two-dimensional
stationary velocity fields, and compare the results with those
of the one-dimensional case. In Sec. IV we briefly discuss
Brownian motion in the nonlinear Poiseuille flow, and give
concluding remarks in Sec. V.

II. LANGEVIN MODELS AND DETAILED BALANCE

Many methods, such as scanning probe microscopy and
laser optical traps, have been deviced to study the mechani-

cal properties of DNA, modular proteins, or synthetic poly-
mers by the extension of a single molecule �9�. In the former
of these methods, the tip of the atomic force microscope is
subject to fluctuations. In the latter, the experiments on the
stretching of single molecules are usually done by attaching
a polymer to two beads, one of which is kept fixed and the
other moved by an optical tweezer. The moving bead is sub-
ject to thermal fluctuations due to the solvent medium, which
is large enough to be undisturbed and considered as a ther-
mal bath at a fixed temperature T. As such, the extension of
the molecule can be modeled by an overdamped Langevin
equation for the position of the bead,

�ẋ = − V��x,t� + ��t� , �1�

where � is the friction coefficient of the particle, ��t� is an
additive random force, V�x , t� is a potential, and the prime
denotes a space derivative. It is usual to consider the over-
damped case since the low-Reynolds-number regime ac-
counts for many situations, such as the motion of microor-
ganisms and macromolecules in solution �7,10�. For the
potential, we take

V�x,t� = V0�x� − H�t − t0�Fx , �2�

where H�t� is the Heaviside step function, to account both for
the internal potential of the molecule V0�x� and for a constant
external driving force F, turned on at time t0. Since the me-
dium is in thermal equilibrium, it is common to assume that
the random force is a Gaussian white noise with zero mean
which obeys the fluctuation-dissipation relation

���t���t��� = 2�kBT��t − t�� , �3�

where kB is Boltzmann’s constant.
A driven system such as the dragged Brownian particle

considered experimentally by Wang et al. �3� can be modeled
by Eq. �1�. In the experiment, an optical trap with a harmonic
potential near the focal point is translated relative to the sol-
vent with constant velocity vopt. The optical force acting on
the colloidal particle at position x is given by Fopt=−k�x
−x0�, where x0 is the center of the trap. Therefore, in the
laboratory coordinates, the system can be modeled by*Corresponding author. Electronic address: mrubi@ub.edu
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�ẋ = − k�x − voptt� + ��t� . �4�

By making a change of coordinates to the comoving frame
x1=x−voptt, the equation becomes

�ẋ1 = − �vopt − kx1 + ��t� , �5�

which has precisely the form of Eq. �1� with a potential of
the form of Eq. �2�. This system has also been studied in the
formalism of the Onsager-Machlup theory �11,12�.

The Gaussian nature of the stochastic force has implica-
tions for the behavior of the system under time reversal. In
this case, it is possible to use the Fokker-Planck equation to
describe the evolution of the probability distribution P�x , t�
associated with the stochastic processes given in Eq. �1�,

�

�t
P�x,t� =

�

�x
� 1

�
V��x,t�P�x,t� + D

�

�x
P�x,t��

	 L̂FP�x,t�P�x,t� , �6�

where D=kBT /� and L̂FP�x , t� is the Fokker-Planck operator.
The stationary distribution is given by

Ps�x,t� = Z−1e−V�x,t�/kBT, �7�

where Z is the normalization constant and the dependence on
t comes from the step function and indicates only that there
are two stationary states, depending on whether the force F is
present or not. To simplify the notation, we will drop the t
dependence from now on. The Fokker-Planck equation im-
plies time reversibility �13,14�, which is given by the opera-
tor relation

L̂FP�x�Ps�x� = Ps��x�L̂FP
† ��x� , �8�

where L̂FP
† �x� is the adjoint operator and time reversal is

indicated by �=1 ��=−1� if x is an even �odd� variable.
On the other hand, it can be shown that time reversal on

the microscopic level implies that the random force is Gauss-
ian. In general, the probability distribution P�x , t� evolves
following the master equation

�P�x,t�
�t

=
 dx��T̂�x�x��P�x�,t� − T̂�x��x�P�x,t�� , �9�

which can be written in the form of the Kramers-Moyal ex-
pansion �15�

�P�x,t�
�t

= �
n=1

�− 1�n

n!
� �

�x
�n

�an�x�P� , �10�

where an�x� are the moments of the transition probabilities

T̂�x �x��, which can be shown, by using the additive nature of
the noise, to be given by

T̂�x�x�� = T̂0�x�x����x − x�� , �11�

where

T̂0�x�x�� = � 1

�

�

�x
V��x� + �

n=2

�
�− 1�n

n!
�n

�n

�xn� . �12�

Here, the �n’s are the cumulants of the stochastic force
�−1��t�, thus establishing a connection between a Langevin
model and the Kramers-Moyal expansion. It is also possible
to express the force V��x� in terms of the stationary distribu-
tion as

1

�
V��x� = − �

n=2

�
�− 1�n

n!
�n� 1

Ps�x�
�n−1

�xn−1 Ps�x�� , �13�

which in the case of Gaussian noise simplifies to

1

�
V��x� = −

�2

2

�

�x
lnPs�x� , �14�

the definition of a thermodynamic force �16�.
The condition of microscopic time reversibility is given

by

T̂�x��x�Ps�x� = T̂��x��x��Ps�x�� , �15�

where Ps�x�= Ps��x�. From here, it can be easily shown that
the moments

Tlm 	
 dx dx�xlT̂�x�x��Ps�x���x��m �16�

obey the symmetry relation �17�

Tlm = �l+mTml. �17�

On substituting Eqs. �12� and �13� into Eq. �16� and proceed-
ing by integration by parts, one arrives at

Tml = − l�
n=2

l+m
1

n
�n�l + m − 1

n − 1
� − � l − 1

n − 1
��l−n��xl+m−n� ,

�18�

where � j 	1 if j	0 and � j 	0 if j
0. By applying relation
�17� to the moment with l=1 and m=2, one finds that �3
=2��3, and consequently �3=0. Then, assuming that �n=0
up to j−1 and considering the moments with l=1 and m= j
−1, one obtains

� j = �j − 1�� j� j , �19�

to conclude by induction that �n=0, for n�2 �for the case in
the absence of an external force, see Ref. �17��. Therefore,
time reversal implies that the random force is Gaussian and
that the Fokker-Planck equation is also valid in this case.

The probability of observing a particle moving from x1 at
time t1 to xn at time tn by any trajectory must be the same as
the probability of observing the inverse trajectory in the
equilibrium state

Ps�xn�P�x1,t1� ¯ �xn,tn� = Ps�x1�P�xn,tn� ¯ �x1,t1� , �20�

where P�x1 , t1 � ¯ �xn , tn� represents the joint probability of
being in the positions xj at time tj. From here, we then arrive
at the detailed balance condition
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P�x1,t1� ¯ �xn,tn�
P�xn,tn� ¯ �x1,t1�

= e−�V�x1�−V�xn��/kBT, �21�

which, despite being derived using the stationary probability,
is valid even if the system has not yet reached a stationary
state, because it is a necessary condition on the dynamics of
the system to guarantee that it reaches stationarity with the
correct Boltzmann weights.

The important aspect is that one is dealing with the dy-
namics of a potential system in which the transition prob-
abilities depend only on energy differences. This can be seen
from the fact that the Fokker-Planck operator of potential
systems can be cast in the form

L̂FP�x� = D
�

�x
e−V�x�/kBT �

�x
eV�x�/kBT. �22�

Before the external force F is switched on, the bead is in
equilibrium fluctuating around the minimum of V0�x� and
satisfies relation �21�. At the moment the force is turned on,
the position of the minimum of the potential changes, the
bead will no longer be at equilibrium and will take some
time to relax to its new state of equilibrium with a force �18�
around the new minimum. However, relation �21� continues
being valid, but with the new potential, since it should be
valid independently of the system being in an equilibrium or
a non-equilibrium state.

That this should be the case is not unexpected, since from
the point of view of the trapped bead undergoing Brownian
motion, the origin of the potential force is irrelevant. The
particle always has a small probability of climbing the po-
tential since its thermal motion never ceases and does not
change by the switching on of the external force. From our
point of view, it may appear strange that in pulling the par-
ticle in one direction it can move in the other; however, it is
a natural consequence of the detailed balance relation.

In the one-dimensional case studied thus far, there is al-
ways a potential if the force is a function of position only,
which is not so for higher dimensions, when nonpotential
contributions may exist.

III. BROWNIAN MOTION IN LINEAR FLOWS

To illustrate the implication of the lack of a potential, we
consider the motion of particles in an infinite incompressible
liquid in stationary flow, taken to be small enough and to
move at low velocities so as to not perturb significantly the
velocity field �small-Péclet-number regime�. In the presence
of large friction, the inertial effects can be neglected. The
probability distribution P�r ; t� of spherical pointlike colloidal
particles in the liquid with velocity field v�r� can be calcu-
lated from the Smoluchowski equation �13�

�P

�t
+ �v · ��P = D�2P . �23�

As noted earlier, in writing this equation, the assumption of
Gaussian noise in the Langevin formalism is implicitly
made. The corresponding equation is similar to Eq. �1�, ex-
cept that in this case it is a vector equation with the force

term −V��x , t� replaced by the stationary velocity field v�r�.
In this work we will address the class of planar stationary
flows whose linear velocity field has components

vx = Gy and vy = �Gx ,

where G is a constant shear rate and � is a parameter that can
range from −1 �pure rotation�, through zero �simple shear�,
to 1 �pure elongation�. In this case, it is possible to calculate
analytically �19� the distribution function P�r ; t�, for the ini-
tial and boundary conditions

P�r,0� = ��r� and lim
r→�

P�r,t� = 0, �24�

respectively. The solution is the conditional probability that a
particle initially at the origin is at position r at time t, and is
given by the generalized Gaussian

P�r,t� =
�

2�
� 2G

D�t�
�1/2

exp�−
�1/2

2�t�
���+�t�x2 + �−�t�y2

− 2�1/2�� + 1���t�xy�� , �25�

where

�±�t� = �� + 1�sinh�2�1/2Gt� ± 2�1/2�1 − ��Gt ,

�t� = DG−1��� + 1�2�cosh�2�1/2Gt� − 1� − 2��� − 1�2G2t2� ,

��t� = cosh�2�1/2Gt� − 1.

It is interesting to notice that even in the presence of large
fluxes the solution is Gaussian. Therefore, this is an example
of a system which can be driven far from equilibrium and
still be characterized by Gaussian distributions. The prob-
ability distribution obtained for the infinite system does not
have a stationary solution, as can be seen by taking the limit
t→� in Eq. �25�, which leads to

lim
t→�

P�r,t� = 0, �26�

for all r. This is expected, since the velocity field considered
allows the particles to spread out without bound. In order to
generate a stationary distribution, it would be necessary to
confine the system to a finite region by using reflective walls
and/or to consider periodic boundary conditions �as in Cou-
ette flows between two cylinders�. We show that even though
the generalized Onsager relations �20� are satisfied by the
mobility matrix of a Brownian particle in all linear flows
�21�, the time-independent relations are valid only when the
velocity field is potential.

A. Elongational flow

For elongational flow ��=1�, the flux is potential and it is
possible to write v=−��, where

��x,y� = − Gxy . �27�

The probability distribution function is given by

GAUSSIAN NOISE AND TIME-REVERSAL SYMMETRY IN … PHYSICAL REVIEW E 75, 031106 �2007�

031106-3



P�r;t� =
�G�

23/2�D�cosh�2Gt� − 1�1/2

� exp− G

4D
� sinh�2Gt�

cosh�2Gt� − 1
��x2 + y2� +

G

2D
xy� ,

�28�

which displays the time-independent relations

P�x,y ;t�G�
P�− x,y ;t�G�

=
P���

P�− ��
= eGxy/D = e−��/kBT, �29�

together with all other similar relations obtained by transfor-
mations on x, y, and G which maintain � invariant. These
relations have the form of what has been named generalized
fluctuation-dissipation theorems, since �� is the work done
on a particle. It should be pointed out that this relation can be
deduced from the detailed balance principle �21� simply by
assuming that the transition probabilities depend only on the
energy difference between the initial and final states, which
is consistent with Eq. �22�. The reasoning goes as follows: if
the system is to have the Boltzmann weights in a stationary
state, then detailed balance must be satisfied. Invoking the
Markov property, a transition probability can be written as a
product

P�xa,ta�x0,t0�xb,tb� = P�xa,ta�x0,t0�P�x0,t0�xb,tb� . �30�

Now, if the transition probabilities depend only on the energy
difference, for the particular case in which Ea=E0+�E and
Eb=E0−�E, we have

P�xa,ta�x0,t0�xb,tb�
P�xb,tb�x0,t0�xa,ta�

= �P�x0,t0�xb,tb�
P�x0,t0�xa,ta��

2

, �31�

and Eq. �29� is deduced directly from here by using Eq. �21�.
It can be written as

P��E�
P�− �E�

= e−�E/kBT. �32�

It should be noted that in performing Monte Carlo simula-
tions with the Metropolis algorithm, one of the requirements
for a system to be able to reach the correct stationary distri-
bution is precisely this relation �the other requirement is that
the algorithm be ergodic� �22�.

From the fact that the distribution function is normalized,



−�

� 

−�

�

P�x,y ;t�dx dy = 1, �33�

and from Eq. �29� we arrive at

�e−��/kBT� = 

−�

� 

−�

�

e−��/kBTP�x,y ;t�dx dy = 1. �34�

This last result is valid throughout the evolution of the sys-
tem and in the stationary state �when there is one�. Equations
�29� and �34� are analogous to the ones obtained by As-
tumian �7� for a single particle in a colloidal suspension in
equilibrium in the gravitational field �23� and to relations
known as generalized fluctuation-dissipation theorems �24�.

B. Shear flow

The case of a shear flow ��=0� shows different features.
Its probability distribution is given by

P�r;t� = �4�Dt�−1� 3

�Gt�2 + 12
�1/2

�exp�−

3x −
1

2
yGt�2

Dt��Gt�2 + 12�
−

y2

4Dt
� . �35�

In this case, the ratio between the probabilities of symmetric
trajectories is no longer time independent:

P�x,y ;t�G�
P�− x,y ;t�G�

= exp� 6Gxy

D��Gt�2 + 12�� . �36�

Here, we notice the appearance of the potential of the elon-
gational flow divided by a function of time in the exponen-
tial. This can be understood by the fact that simple shear can
be viewed as a composition of a rotation, whose vorticity
destroys the potential nature of the flow, and an elongational
flow. For small times or small shear rates, if we expand the
exponent to first order, this case will approximately obey the
law found for elongational flow. However, as time passes,
convection becomes important and the flow is no longer ap-
proximately potential. For large times, we can no longer
make the time-independent approximation and the time-
independent relations will not be valid. In this case, we can-
not make the same reasoning as in the former, because no
potential exists for simple shear. We can consider as an ap-
proximate experimental realization of simple shear the flow
of fluid between two rotating coaxial cylinders. Since the
flow does not contribute a potential energy, it is expected that
at long times the distribution of Brownian particles Ps�x ,y�
should become homogeneous. We should obtain from Eq.
�20�

P�r1,t1� ¯ �rn,tn�
P�rn,tn� ¯ �r1,t1�

= 1. �37�

Instead, we obtain Eq. �36�. However, in taking the limit t
→�, we arrive at Eq. �37�, so that at long times we recover
the expected stationary result.

C. Pure rotation

The case of pure rotation ��=−1� has a distribution func-
tion identical to when there is no external velocity field

P�r,t� =
1

4�Dt
exp�−

x2 + y2

4Dt
� , �38�

which obeys Eq. �37�, as it should, since there is no potential
involved.

IV. BROWNIAN MOTION IN POISEUILLE FLOW

Up to now, we have been dealing with linear flows. We
will now focus on a nonlinear nonpotential flow, which in a
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fixed coordinate system �x� ,y�� is given by the parabolic
velocity profile

vx� = ��R0
2 − y2�

and

vy� = 0,

where �=Vmax /R0
2, R0 is the tube radius, and Vmax character-

izes the maximum velocity at the center of the tube. This
nonlinear flow has a parabolic velocity profile, and in this
case the distribution function cannot be obtained analytically.
An expansion of the distribution for particles near the center
of the flow has been calculated �19�, making a change of
variables to a translating system

x� = x� − �x��0� + v��0�t��

and

y� = y� − y��0�

and then considering the dimensionless parameters

t = Dt�/y0, x = x�/x0, y = y�/y0,

and

� = �y0
3/D ,

where � is a local Péclet number. In these variables, the
convective diffusion equation becomes

�P/�t = �2P + ��2y + y2� � P/�x , �39�

with an approximate solution

P = P0 + �P1 + �2P2 + ¯ , �40�

where the Pi’s are given by

Pi = pi�x,y,t�exp�−
x2 + y2

4t
� . �41�

The functions pi become more complex as we increase i:

p0 =
1

8��t�3/2 , p1 = −
x�t + 3y + y2�

48��t�3/2 , �42�

and for p2, which is an even function of x, see Ref. �19�. For
this case also, no time-independent relations such as �29� can
be found, as expected, since this is not a potential system.
Instead, we obtain as an approximation for small �

P�x,y,t�
P�− x,y,t�

� 1 + 2�
P1

P0
+ �2 P1

2

P0
2

=1 − �
x�t + 3y + y2�

3
+ �2� x�t + 3y + y2�

6
�2

.

If �=0, Eq. �39� reduces to a diffusion equation and has a

Gaussian solution; however, if ��0, then the solution will
not be Gaussian, independent of whether � is small or not.
Therefore, this illustrates a simple case of a system which
may be very close to equilibrium but that displays non-
Gaussian behavior of the probability distribution function.

V. CONCLUSION

We have studied model one-dimensional systems and a
two-dimensional system composed of noninteracting Brown-
ian particles and a liquid driven to a steady state by external
forces in thermal equilibrium. Although the flow conditions
are steady, the colloidal particle distribution may not have a
steady distribution as is the case of a colloidal suspension in
an infinite region. Notwithstanding, in potential systems,
some time-independent relations can be found.

We demonstrated that the same kind of time-independent
relations that appear in experiments with single molecules
are present in Brownian motion in elongational flow. By
showing that the origin of these relations is microscopic re-
versibility and the existence of a potential, we conclude that
such relations are natural consequences of the thermodynam-
ics of potential systems, even when considering nonequilib-
rium states.

We also show that the Gaussian nature of a distribution is
not necessarily related to equilibrium conditions. Even
though the external driving force may be large, keeping the
system in a far from equilibrium state, the distribution can be
Gaussian nonetheless. We pointed out that the linear charac-
ter of the flow is more important to Gaussianization than the
equilibrium �or nonequilibrium� state of the system. This was
seen in the fact that even though the external driving in Pou-
seuille flow can be small, the distribution function will not be
Gaussian. On the other hand, in the linear cases, such as
elongational flow or simple shear, the fluxes may be large
and the distributions still Gaussian.

In summary, we have shown the implications of the
Gaussian nature of the noise in the stochastic behavior of
nonequilibrium systems. Even in systems subjected to strong
external forces, as in the stretching of single molecules, the
process is carried out in a solution that serves as a thermal
bath held at constant temperature and, therefore, there is no
reason for the noise to be other than Gaussian. That, together
with the potential nature of the system, leads naturally to the
pervasive presence of time-independent relations in nonequi-
librium systems.
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